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ABSTRACT

A theoretical study is made of hypersonic flows over thin bodies subjec£
to the combined effect of leading-edge bluntness, boundary-layer displacement as
well as surface incidence. Within the scope of the boundary-layer theory and
the hypersonic small-disturbance theory, an approach is developed based on a
flow model consisting of three adjoining regions: an inner laminar boundary
layer; an outer (detached) shock layer; and between these two, a low-density
entropy layer. This approach allows simultaneous treatment of the boundary layer
and its outer inviscid flow field in a manner consistent with the Newtonian
shock=layer approximation.

The theory pertaining to the leading approximation for strong shock and
”/—»1 1is completely developed and its simplicity ﬁermits solutions to a number
of problems of interest. For the flat plate at zero incidence, the theory
yields a solution agreeing with the blast-wave theory at one limit and the
strong inviscid-viscous interaction theory at the other. Results are also ob-
tained for the flat plate at incidence. The results for the pure inviscid flows
with tip-bluntness effect exhibit an oseillatory decay in pressure on slender
cone and wedge afterbodies. This phenomenon signifies an idealized form of re-
impingement of the shock layer on the afterbody at glancing incidence.

Complementary to the aforementioned study, an examination is made of the
similitude of hypersonic boundary layers, taking specifically the leading-edge
bluntness into account. Rules for correlating pressure, shock shape, skin fric-
tion and heat-transfer rate are given. The simplification of these rules for

flows with strong shock waves is pointed out.
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LAYER AND ITS OQUTER FLOW UNDER THE INFLUENCE OF LEADING-

EDGE BLUNTNESS

TABIE OF CONTENTS
Section

FOREWORD o o o o« 0o ¢ 6 6 6 6 6 ¢ 6 06 0 ¢ 6 6 6 0 5 o o
ABSTRACT s 6 o o 0 ¢ 6 o6 6 6 6 6 6 06 ¢ s 6 06 o o o & o
NOTATION © o o ¢ e 06 © 6 ¢ 6 6 o 06 0 6 6 6 o 0o 0 6 o o

LIST OF TIIUSTRATIONS & o o o o 6 o ¢ o 066 0 o o ¢ o

1 INTRODUCTION o o o o o o o o 6 6 6 6 06 6 © 6 o ¢ 6 o o
2 THE LOCAL SIMITARITY AND THE SHOCK-LAYER APPROXTMATION
3 LEADING-EDGE BLUNTNESS EFFECT AND DETACHED SHOCK LAYER
A Model for the Inviscid Flow Field o o o s o o o o
Restrictions of the Present Analysis ¢ o o o ¢ o o

Analysis of the Entropy Layer o o o o ¢ 6 o o o ¢ o
Discussion ¢ o o o ¢ o 6 o 6 6 06 ¢ s 6 6 0 06 0 & o ©

L THE ZERO-ORDER THEORY FOR INTERACTION OF THE BOUNDARY

o 0 o 0 ¢ 6 o0 0 6 ¢ o0 ©0 6 ¢ ¢ ¢ o0 o ¢ ¢ O

The Governing Equations for Small € and Large m*e* ,

The Flat Plate with Bluntness and Displacement « o »

The Inclined Flat Plate with Boundary-Layer
Displacement ¢ o s « 6 6 0o 6 ¢ 6 ¢ 06 6 6 6 06 0 o o o

The Inclined Flat Plate with Tip Bluntness and the
Corresponding Problem of a Blunted Cone

The Combined Effect of Bluntness, Displacement and
BOdy’ThiCMESS(:oooeooooooooooaooo

¢ ¢ o O ¢ O

L

o

Hypersonic Similitude Based on the Zero-~Order Theory .

=

13
13

16
23

28
28

30
3k
36

L0



TABLE OF CONTENTS (Contd)

Section Page

5 THE VISCOUS HYPERSONIC SIMILITUDE INVOLVING LEADING-EDGE
BLI’NTNES S o Q a A4 o o o < Q o o ° o o a o o ° o o o o o < o R h3

Basic Requirements for the Validity of Hypersonic
Boundary-Layer Similitude Involving Tip Bluntness . o o o 43

Hypersonic Similitude Involving Strong Shock Waves o« o o o L6
6 CONCLUSION ] o L] o o -] o o o o o o a o o o o o o o o o o o o h8
REFERENCES o o E o ° o o -] o ° o o o o ) o © © © o -] o o o o 50
APPENDIX I - ON THE COMPLETE SOLUTION TO Z(zz')=eA tf ..., 56
APPENDIX II - ALTERNATIVE FORMS OF HYPERSONIC SIMILITUDE FOR
CORRELATING SHOCK SHAPE, DISPLACEMENT THICKNESS,
'SKIN FRICTION, SURFACE PRESSURE AND HEAT-TRANSFER
RATE IN PLANE AND AXISYMMETRIC FLOWS . . . . o 61

TABIJES ] 9 L] o o (4 © (4 - © o o o (4 © o <] o o o L o o L] o o ] 6h



qq L é§ :,h @ EU *O
= M
RN

FOU

—

X

NOTATION

speed of sound in the free stream

constants

( Mo Qu / A, U", the skin-friction coefficient

(K g;) //OQ. (Hy Hw) }‘///0 U(Hy—H,) » the surface heat-

transfer coefficient

specific heats of the gas at constant pressure and at constant
volume, respectively

constant of proportionality in the linear viscosity temperature

relation /J.//l = CT/T

4 (T,) 7;,
#(Tw)

drag of the blunt leading edge or nose

specific internal energy of the gas

symbols representing certain functions of the variables involved

in Egses (Le15), (5.1) and (5.2)
specific enthalpy
Ho+ '—Z(%z-ﬂ-/ll"z) s

yth order Bessel's functions of the first and second kind,
respectively

total specific enthalpy

D / 5 /ow U ) (frf{;/q.) , leading-edge (nose) drag coefficient

efi‘ect

s a parameter controlling inviscid tip-bluntness

reference length
constant associated with the streamline in the entropy layer

U / @, s free=stream Mach mmber

vi
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NOTATION (Contd)

pressure
Prandtl number A%P; K

gas constant in the equation of state
Reynolds number

thickness of the blunt leading edge or nose

temperature

T D-&3 7;J///2' s a reference temperature for defining C

To

velocity components parallel to the 4 and ,?V axes, respec-
tively

the value of 4 din the free stream
M—US

rectangular coordinates in directions parallel and normal, respec-
tively, to the free-stream velocity with the origin at the nose

the streamwise perturbation velocity

the ordinates of the inner edge of the entropy layer; the
outer edge of the entropy layer, the shock, and the body surface,
respectively .

the variables related to X; and g , Trespectively, as defined

in the text

the angle of attack of the flat plate. Positive et refers to
compression or wedge flow over the surface in question; also half-
cone angle

A?%/Q%r s specific<heat ratio

the boundary-layer thickness and displacement thickness, respec=-
tively .

'/— l 7/ "’ ti 1
-__—.7’7‘/ 9 ;;f:l-_ s Trespectively

the shock angle, i.e.
flow-deflection angle

vii

dYs/d,w , which may be taken as the typical
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NOTATION (Contd)

H - Hy
Hy~H,,
a function whose derivative aé/a@ is -5-

thermal conductivity of the gas
viscosity of the gas
certain variables in Section }

two spatial variables used in the boundary-layer analysis, see
Eq. (2.1)

a number which is zero for plane flows and unity for axisymmetric
flows )

gas density

Ke /%,

a body thickness parameter used in the similitude consideration
(for the wedge and cone, 7= & )

3 ' 3 3 / .
M R:C'x_ s M Rg,_ s M 7’?57 s respectively
€ (0,66l + 1.73 -I.,-;“-’—) ? s a parameter governing the boundary-
(-}
layer displacement effect

the constant exponent in the relation /uoc Tw

pertaining to the inner edgé of the entropy layer
pertaining to the Blasius solution

at the outer edge of the entropy layer

based on the reference length (# = L)

pertaining to the condition behind the strongest part of the shock
at the nose

viii
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NOTATION (Contd)

behind the shock (at # )

based on the nose thickness (x=¢)

at the body surface or wall

at the outer edge of the boundary layer

pertaining to the free-stream stagnation conditions (for the tem-
perature)

pertaining to the free=-stream condition

based on the reference temperature T*



LIST OF ILLUSTRATIONS

Figure Page

1(a) Illustrations of the Streamline Pattern of the Flow Field

Around a Slender Body with Small Blunt NoSe = o o o o o o o 67
1(b) Division of the Inviscid-Flow Region About a Slender

Afterbody Into a Shock Iayer and an Entropy Iayer . . o o o 67
2 Determination of the Maximum Perturbation Velocity

|Au| ® U,-w Over a Flat-Plate Afterbody in an Inviscid

Hypersonic FIOW o o o o o o o o s o o 6 o o o o o o o o o o 68
3 Results Based on the Zero-Order Theory of a Flat Plate

Under the Combined Effect of Tip Bluntness and Boundary-

Iayer Displacements .« . s o o o ¢ o o o o o o o o o &8 o o o 69
L Results Based on the Zero-Order Theory of a Flat Flate

Under the Combined Effect of Boundary-layer Displacement

and Angle Of Attack o o o o o o o o o o o (-] -] o o o o o o o 70
5 Results Based on the Zero-Order Theory of a Flat Plate

Under the Combined Effect of Leading-Edge Bluntness and
Angle Of Attack o o o o -] o o o ° -2 o o o °. [ o L d o o - o o 71

6 Results Based on the Zero-Order Theory of a Blunted
Slender’coneoogoooooooooooooooocooeo 72
0 Results Based on the Zero-Order Theory of Hypersonic Flow

Over Thin Wedge Subject to lLeading-Edge Bluntness and
Boundary=Layer Displacement Effects o ¢ o« o o o o o s o o @ 13



SECTION 1

INTRODUCTION

Two outstanding features characterize the hypersonic flow around a thin
body. One is the displacement effect of the boundary layer and the other is the
downstream influence of a small, but blunt; nose or leading edge. The pro-
nounced displacement effect is related to the viscous dissipation of the high-
speed flow, which raises the local temperature and thus the kinematic viscosity.
The lateral extent of the hypersonic boundary layer may therefore become com-
parable, or greater than, the thickness of the thin body, and an interaction of
the inviscid and viscous flow regions must take place. The importance of the
leading-edge bluntness may be perceived from the connection between the energy
gained by the cross-flow field and the nose drag. Since the drag of a blunt
nose is rather high; the work done by it alone may account for a sizable portion
of the total enefgy delivered to the fluid. The unsteady motion observed in the
cross-flow plane; that is, a plane fixed with respect to the ambient fluid and
transverse to the direction of motion, may therefore be compared with that of a
blast wave generated by instantaneous release of energy of an amount proportional
to the nose drag. For hypersonic flight of slender bodieé, leading-edge blunt-
ness is generally essential for heat-transfer control, while for flight at
relatively high altitude, the boundary-layer displacement effect is important.
This study will consider hypersonic flows in which both of these phenomena are
present,

There is a body of theory dealing with each of these two effects as inde-
pendent phenomena. For the boundary-layer displacement problem taken separately,

we have the rather extensive works on strong and weak interactions of the invis-



cid and boundary-layer flows over a (sharp-edged) flat plate, as well as treat-
ments of related problemslwl?o These theories provide an account of the self-
induced pressure in the outer flow associated with the displacement effect of
the boundary layer. From the literature on the subject, the early contributions
of Shenl’h, Lees and Probste:"LnB"é,° ILi and Nagamaisus, and also the definitive
work of Stewartson9 should be noted., Taking the bluntness effect separatgly, we
have the strong blast-wave theories of LiniB, Iees and Kubota19 and otherszomzh°
These works make use of the:analogy between the transient cross-flow field down-
stream of a blunt nose and the flow field produced by a violent explosion of the
type previously treated by Taylor'zs’%o

On the other hand, for the problems in which both the displacement and
bluntness effects are important, there has not been any satisfactory theory. A
theory accounting simultaneously for both effects is essential not only for its
practical implication, but also because the task of isolating these two effects
in hypersonic flow is generally not simple, even under laboratory conditionsZFBl°
The aim of this paper is to present a simplified but consistent approach to the
problem which will render possible the study of interaction of the boundary layer
with the outer flow under the influence of leading-edge bluntness as well as
afterbody geometry.

A continuum flow model consisting of a laminar boundary layer adjacent to
the slender body and an inviscid outer flow field will be assumed for this theo-
retical study. Since the Mach numbers considered are high, and the bodies thin,
the lateral extent of the flow field bounded by the bow shock is small, Our
analysis may therefore be carried out within the scope of the boundary-layer

theoryh’6 and the (inviscid) hypersonic small-disturbance theory32=3ho Within



this framework, two complementary studies are made. First, and the major part

of our analysis, is the development of an approach which takes account of the
combined effect of boundary-layer displacement, leading-edge bluntness, and body
thickness, To achieve this end, certain approximations and simplifications will
be introduced. The second study is concerned with hypersonic similitude when
both boundary~layer and tip-~bluntness e;f.‘fects are present, and with simplifica=~
tion of the similarity law for flows with strong shock waves. For this simili-
tude consideration, a number of the assumptions introduced in the first study are
not required.

Underlying the present spproach are the two basic concepts: a local simi-
larity in the boundary layer and a detached shock layer in the outer inviscid
flow. Both of these concepts are desirable for g development consistent with the
so-called Newtonian shock=layer approximati@n35~h0¢ The consistency between
local similarity and the shock-layer spproximabion has, in fact, been discussed
eaxlierhle The concept of a detached shock layer, which includes the so-called
"free 1ajers'”39’hl as special cases, is a necessary modification of the shock-
layer theory to gllow treatment of tip bluntnesse

A similar treatment of the bip-blumtness effect has been given previously
by Chern:yiﬂ’ 226 The essential idea of a detached shock layer is implicit in his
integral method for hypersonic invisecid flows. While Chernyi's method and the
present analysis are equivalent in the idealized limit 7’—>i s they differ
in the higher order spproximation for 7”7 not close to unity. It may also be
pointed out that the inviscid tip=bluntness éffect has been studied recently by

h2,43

Guiraud . Here, the idea of a detached shock layer was employed, and certain

equations obbtained are very similar to those to be developed later in this re-



port. Guirsudl's study does not lead to an explicit solution of the problem,
however., ‘

Throughout the present analysis an ideal gas with constant specific heats
will be assumed ahead of and behind the shock (although 7/ may change across
the shock)e. In order to arrive at a simple form of local similarity in the
boundary layer, the Prandtl mmber is taken to be unity, the body bemperature
is assumed to be uniform, and a linear viscosity-temperature relation is adopbed.
The present study is primarily concerned with plane, steady flows. For the
purpose of comparing plane and axisymmetric flows for the inviseid tipnbluntnsss
effect, however, the problem of a blunted slender cone is also studied along
with the corresponding problem of plane flow over a blunted Wedgese.%'é

The three requirements which control the accuracy of the following analysis

of the present flow model may be expressed as followss

(a) The disturbance velocity -‘%‘i = [% = /] s as well as the

square of the flow angle, in the invisecid flow field must be
negligibly smzall in comparison to unity.
(b) The bow shock wave must be sufficiently strong.
(¢) The specific heat ratic 4 must be sufficiently close to unity.
Th.é first requirement implies exclusion of the blunt-nose region itself
from the present engquiry, and we will deal only with its downsiream effect. The
consistency of these requirements and the degree of the appreximation involved

will be examined later. The zero~order theory, which is to be studied in detail,

* The axisymmebric problem involving boundary-layer displacement is complicated

by the transverse-curvature effect., In principle, however, a modified form of
the local similarity can be obtained for the boundary layer, although it may
lose the appeal of simplicity.



pertains to the leading approximation under the last two requirements cited, and
may therefore be compared with the classical result of Busema:mgsﬁho (Newtonisn-
Plus-Centrifugal-Force) .

In view of the continuum assumption, the present theoretical model cannot
be used as a valid description of flow phenomena when the molescular nature of
the gas is manifested. On the other hand, the effects of velocity-slip, and
temperature=jump, as well as of the "vorticity interaction® which precedes the
breakdown of the usual continuum model, may be seen to belong to the same, or
higher, order as the error in the standard boundary-layer approﬁmationn”léshho
We may therefore expect the continuum theory to remain meaningful so long as
there exists a sufficiently thin boundary layer, and this condition is implied
by requirement (a). Based on the solutions obtained, it is possible to define
a domgin of validity for the present conmtimuum flow model in terms of the Mach
and Reynolds mumbers of the fres stream. It may be seen that this domain is
large enough to permit mamy useful applications. The adoption of the unit
Prandtl number and a linear viscosity-temperature relation may seem at first
sight to be oversimplifying the problem. As examples will reveal, these sim-
plifications are not likely to affect the skin friction, heat transfer, and the
displacement thickness in a significant way, particularly, when an appropriate
reference temperature is chosen for the viscosity-temperature relation. We
may notice alsc that for the present analysis, these two assumptions are not
strictly necessary. Analysss similar to the pressnt one may be carried out for
an arbitrary but constant Prandtl number snd a more general viscosity law with
no apparent difficulty. Another limitation of the present study is, of course,

the assumption of consbant specific heats. The gas behind the normal shock in



front of a blunt nose, under most circumsbtances, will be in a dissociated, or
internally excited stateg the specific heat ratio of the gas will be closer to
unity than that under standard atmospheric condition, Generally speaking, the
shock=layer approximation ma,y':‘improve as a result of the real=gas properties at
high temperature., Strictly speaking, however, the specific heat ratio or its
equivalent cannot generally be taken as constant for the entire flow field, If
the flow field over the slender afterbody can be assumed to be near local
thermal equilibrium, and if the body temperature is sufficiently low, the real-
gas effects may not be critical since the local temperature downstream is con-
siderably lower than the stagnation temperature at the nose., In any case, the
appreoach presenbed herein may still be employed to simplify the analysis, al-
though it may not lead directly to a solution. This point will be discussed
further,

A somewhalt shortened version of this investigation, together with experi-
mental results, has been presented in Ref, )45%0 In addition to the inclusion of
tip=bluntness effects in axisymmetric flows, further discussion and clarifica-
tion not given in Ref. 45 will be taken up hers.

In the following sections, the local similaribty in the boundary layer and
its coﬁsistency with the inviscid shock=lgyer approximation will first be dis-
cussed. The theory of a detached shock layer will next be considered. The
zero=-order theory for the complete problem will then be developed and applied

to particular cases of interest.

* The experimental study described in Refe. L5 was conducted in the Cornell Aero-
nantical Laboratory 11 x 15~inch Hypersonic Shock Tunnel under the sponsorship
of the Us So Adir Force Office of Scientific Research.



SECTION 2
THE IOCAL SIMITARITY AND THE SHOCK-LAYER APFROXIMATION

The idea of assuming a local similarity in the boundary lgyer as a means
of estimating heat=transfer rates on blunt bodies at high speed was first proposed
by Lees™® and utilized by others™ B, Lees observed that the enthalpy disbri-
bution in the boundary layer is rather insensitive to pressure gradient, parti-
cularly if the boundary layer is cooled. For most engineering applicabion, it
suffices to ignore the pressure gradient, except for its effects on changing the
local Reynolds mumber. In this case the problem is reducible to that of a flat
plate;, and for this problem, a self-similar solubtion exists if the well-to-
stagnation temperature ratio is constant along the pla,teo*

It is essential to recognize that in the present study, where only thin
bodies are considered, the pressure gradient is unnnportanﬁ not primarily because
the wall is made cold, but because the direct effect of pressure gradient on
the hypersonic boundary layer is at most of the order

7|
7+

-

The condition of small € is a requirement in existing shocke=layer theories for
inviscid hypersonic ﬂom%amo It is natural to treat the present boundary-

layer problem by an analogous perturbation procedure which uses e as a conbrol-
ling parameter, The argument used for the local sgimilarity method in blunt body

applications is avoided in the present approach.

3t
In a more specific sense, the similarity under discussion should be termed

the "local flat-plate similarity'.



The foregoing considerations are readily seen after transforming the var-

iasbles s in the bounda,ry layer as follows:
dy
; - j ¢z =
;/"— 4 d v P dx
q = Qel_ f (/‘5" —L# / f c -t T
Q o -P.la
where °
b = 2 U, L
Tt M
Assuming a linear viscosiby temperature relation
A To

and a unit Prandtl number, the system of differential equabions governing the

boundary-layer problems in plane flow is reduced to

énf@@nn—zg[@ O ~ % Qm}

_ _Zj_z%ﬁf T %) o- 5
= l: e oﬁid/}{l[ﬂ <I o)@ @q} ’

(2418)
20,+0 6 -2E|D 6,- §0,+9, ® —i,&u(/ T‘“) =0
M g g 1 AT dE T
and the boundary conditions t
@'—‘ ?q’—‘@:O ab r]_—.O
(2.1b)
@q=@:/ ab q:(b
vhere
_ U _ H-H,,
& =3 ©= HA,



In arriving at these equations, quantities of orders |/M* and Au,/U higher
than the remaining terms have been neglected. Implicit in Eq. (2.1) is the fact
that within the degree of approximation afforded by the boundary-layer analysis,
the normal pressure gradient can be ignored. For the neglect of the pressurs
variation across the boundary layer, an extremely thin boundary layer is not
strictly necessary. Rather, the neglection depends on the density level within
the hypersonic boundary léyer being relatively low. Therefore the pressure may
be taken as a function of 4 alone even when the boundary-layer thickness be-
comes comparsble to the lateral extent of the outer flow ”60

Now, consider the situation when € is also small, Except for the param-
eter ¢ itself, all terms appearing in Eqe. (2.1) will remain of order unity,
That is, they will be independent of € in the limit € —>0 . In this limit,
the right~hand member of Eg. (2.1a), which involves the pressure gradient, van-
ishes with € .+ The leading approximation to the solution of the system
Eqs (2.1) for small € will therefore be independent of € and is, in fact,

governed by the Blasius equation

.2@8"' . @B @Bll :O
.0 =00=3, @-1=0

(262)

with ©, = @; « The problem of determining the higher-order approximation is
equivalent to finding a correction to the classical flat-plate solution for a
slight nomniformity of the outer inviscid flow. The nonhomogeneous term appear-
ing on the right of Eq. (2.1) reveals clearly the role of the wall-to-ghagnation
temperature ratio in controlling the degree of approximation of local boundary-
layer similarity. Changing T, /T, from wnity to zero may typically reduce the

correction term by 75%.



Neglect of the pressure~gradient term in the boundary-layer momentum equa-
tion has also been employed by Lees6 to simplify the problem of strong shock
boundary=layer interaction., For this problem, however, a self-similar solution
exists even 'lw:i__th the pressure gradient retained. The theoretical justification
for the neglect of pressure gradient to cases involving arbitrary pressure dis-
tribution on the basis of the shock~layer theories has only been pointed out
quite recen‘tlyhll,

The mathematical problem of determining the higher~order approzimation is
one that involves solution to a linear partial differentisl eqguation. An alter-
native which avoids solving the partial difi‘ereﬁtial equation is, of course, the
momentum~integral method usually adeopted in boundary=layer analyses. For the
purpose of determining pressure, skin friction, and surface heat-transfer rate
for the present problem, this mebthod may be sufficient, as has been demonsirated
by Stewartsonl!s anslysis for the strong interaction problem of the flat pla‘i:,e9.
The scheme arfived at recently by Moorew, which accounts for the first-order
correction to the local similarity, is essentlally one of a similar nature.
When the momentum~integral method is employed, the local similarity assumpbion
is no longer necessary, even as a leading approximation (for small € ).

In the leading approximation for small € , the surface heat-transfer
rate, the skin friection, and the _displa,cement thickness of the boundary layer are

determined explicitly from the pressure distribution.s For the case of plane

flow ; _ 7@/719/
Mew® 03328 T3z
)/L . L
»OF ) Z/C/H 7/ - 5 (263)
| ("L 2z
M v e (0.664+173 )7, f":w?f



where

- 3 2

T.=M &
These results, in view of the approximations involved, will be subject to errors
of order € and A uwg / )/ . The usval errors inherent in the boundary-layer
equations as well as errors from possible slip, temperature-jump, and vorticity
effects, will presumably be no larger than those incurred by the approximation
Uy U.13’16’hh., The magnitude of Au,a/l) will be examined later.

Before proceeding to the analysis of the inviscid flow region, the choice
of a reference temperature for the determination of the constant in the linear
viscosity-temperature relation will be discussed. The assumption of such a vis-
cosity law may seem to be unrealistic since the temperature variation within the
hypersonic boundary layer is quite large and the detail of viscosity law may be
important. The approximation may be considerably improved by choosing the con-
stant C rto represent correctly the value of v:‘i_lseosity at an appropriate refer-
ence temperature. Instead of choosing the wall temperature as a reference, as was
proposed earlier by Chapman and 1'«:ubes:i.n5 Y and adopted later by others for hyper-

sonic applications; we recommend a reference temperature T* defined by

'];E‘];I:,.,,g-;ijé (2.L)

Whence

- T & (Ty)
= C, == *
v % T* M(-T'w)

This choice of T % is particularly meaningful when local boundary-layer similar-

ity holds, as in the present problem. For we may then apply Crocco's integral

11



relation, and the reference temperature T; given above is seen to be simply an

: +
average temperature across the hypersonic boundary layer, i.e.

' [
7;=de“ Y TaLu
Uy { Us
(4 [+]

The skin friction and the heat-transfer rate on a flat plate under uniform pres-

sure based on T, of Eq. (2.4) agree exceedingly well with results based on the

Young formu1a52

in the higher Mach number range, provided the Prandtl number is
not far from unity. A comparison of these results, including the results based

on T, as a reference temperature, is given in Table I.

* An examination shows that T, given by Eq. (20%1 turns out to be quite close
to the reference temperature proposed by Eckert” .

12



SECTION 3

LEADING~EDGE BLUNTNESS EFFECT AND
DETACHED SHOCK LAYER

A Model for the Inviscid Flow Field

The necessity of allowing the shock layer to detach from the afterbody of
a blunt leading edge is evidenced by the breakdown of the standard shock~layer
theory around the shoulder region where the pressure would accordingly fall be-
low zerc and the shockelayer thickness would become infinite. The essence of
our analysis is that the pressure at the base of the detached layer will not be
assumed equal to zero, g priori, as was done for a free la.yer39, but is to be
determined as part of the solubion to the problem.

It is essential to realize that, within the inviscid, hypersonic-flow re-
gion bounded by the shock and the body (i.e., the ouber edge of the boundary
layer) dowmstream of a small blunt nose, there is an inner core of considerable
extent containing gas particles whicﬁ have come through the comparatively forward,
and hence stronger, portion of the shock (see Fige 1). It is appropriate to
term this region an entropy lgyer, since its specific entropy is m;J.ch higher than
that prevailing near the adjacent shock. The temperature within this layer is
accordingly much higher, and the density much lower, than the corresponding
values near the shock; the gas within the enbropy layer has been heated, so to
speak, by the strong forward portion of the curved shock., It is nabural to con-=
sider the remaining, and relatively thin, high-density part of the flow field
behind the shock as a shock layer in the usual sense, except for the fact 'bha:b it
is no longer atitached to a rigid body. The equivalent body surface for this
shock lgyer over the relatively slender, downstream portion of the flow field

can be taken to coincide with the outer edge of the entropy iayer P 7 = Ye ()

13



which, in view of the particle~isentropic condition, must also be a streamline
(see Fig. 1b). Across this streamline boundary, the pressure must be contine
uous.” ‘

The flow structure within a hypersonic shock layer has been treated quite
extensively by Freeman3 7 and other33 Bmh’oo Our present study will deal with the
entropy layer, the outer edge of which is the base of the shock layer. To do so,
we need a knowledge of the ﬁressuﬁe at the base of the shock layer in terms of

Ye o The leading approximation under (b) and (¢) for this relation, according

to shock~layer analysis, is simply

P p U B{;z*- Y, Ye"] (3.1)

which represents the Newtonian-plus-centrifugal (Busemann) pressure formila sim=

plified for thin bodies. . The corresponding formula in the axisymmetric case is
‘ -3 1% Ye Ye"
7% 27 /000 v [Ye + 2

Restrictions of the Present Analysis

In view of the high temperature attained within the entropy layer, the
local velocity « could be considerably reduced from its free-stream value U .
Since the assumption of Uy 4 U has been made in the boundary-layer analysis,
and will be used later in the treatment of the entropy layer, an assessment of
the magnitude of Auw / U is imporbant and will be made prior to further develop-

mente

Gl It may be noted that in the vicinity of the blunt=nose region, the inner edge
of the shock layer (which in this instance is a free layer) may not be closely
represented by a streamline. This implies that streamlines within the entropy
layer actually come from various points glong the curved bow shock upstream
(ses Fig. la), and the distribution of entropy within the entropy layer is not
generally uniform. The validity of the assumption that the inner edge of the
detached shock lgyer approaches a streamline depends, in faet; on the small=
distance assumption (a).



For the purpose of examining the magnitude of Au/ I/ in the entropy layer,
we consider first the particular case of a flat plate under the influence of the
strong blast-wave effect produced by its blunt tip. For this case, the surface
pressure distribution is quite well established by the consistent results of the

19,20,2l

blast-wave theory and the correlated numerical calculations based on the

characteristics me’chod23 + We can therefore determine the maximum value of the
perturbation velocity (for arbitrary « ) from the particle-isentropic condition
and the Bernoulli relation. Maximum values of ]Au./ Ul for o = 1,20, 1.L40,
and l¢.6_67 are presented in Fig. 2 as a function of /8t « The results indicate
that sufficiently far downstream of a blunt nose (w/,&t 2 10), Au/u remains

*

sufficiently small to permit the approximation Wy U

Since in most cases,

29 4.2
713;<'7DS",\'4 7+ MO

where O is the local shock angle (which gives also the typical local flow
angle), a conservative estimate for the perturbation velocity may be obbained

from the Bernoulli relation, which can be taken as
L/ -Z-J.

lduwl & “"é“ O

where the exponent 2 (7- I)/g’ has the values 1/3, L/7, and L/5 for 7 = 1,20,
1.L40, and 1.667 respectively,

We may now state more explicitly, in terms of the typical flow deflection
angle, the requirements which will control the degree of accuracy of the subse-

quent analysis of the inviscid~flow region, as well as of the boundary layer:

* At q&/,,ét =210 , IALL/U] é' 0012, 0016, and 0,26 for 7 = 1,667, 1loL0, and 1.20,
respectively. In the calculation for 2 = 1,20 , the pressure formula given
by the zero-order theory for small € has been used.
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9 2=

(a) "2”(6) " st be negligible in comparison with unity

(®) 1/M*6” must be sufficiently small in comparison with unity

(C) e must ‘be sufficiently small in comparison with unity

Obviously, condition (A) is essential for the assumption w=U at the outer edge
of the boundary layer and within the entropy layer as well. Condition (B) calls
for a sufficlently strong shock, and (C) and (B) together will permit treatment
by the shock-layer concepts By these requirements, the admissible ranges of the
shock (and flow) angle € , and € , are necessarily restricteds To satisfy
the small=perturbation assumption, 6 must be small, but not so small that the
shock camnot remain strong., In addition, the shock=layer approximation reguires
€ to be close to unity, but not so close that the small-perturbation assumption
will be violated. The ranges for © and € can, of course, be enlarged by in-
creasing M and byv including (consistently) terms of higher orders in € and
/M*9* . | |

Analysis of the Entropy Layer

Our analysis will be based on the fact that the density within the entropy
layer is low compared to that in the free stream, ie.e. 2 L 2 e It is
essential to examine the compatibility of this fact with the requirements set
forth above. Since the density depends not only on the pressure but also on the
entropy, we should distinguish two situations. In one, the streamlines over most
of, or at least a considerable part ofy the entropy layer come from the immediate

vieinity of the blunt nose. In other situations, the streamlines from the blunt
¢

«ts

nose region reach only a small fraction of the entropy layer.

* The rest of the streamlines in the entropy layer come from the slender tut
still comparatively forward and stronger portion of the curved bow shock.
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In the first situation, the specific enbropy is at the same level as that
prevailing at the nose, and the order of magnitude of the density may therefore
be represented for particle-isentropic flow by

1
7+l [ P\7 5
£ » =0|d
LT r\z

Comparing this with requirement (A), we see that the local density is indeed

3
small in comparison with the free~stream value when (A) is satisfied. In the
second situation, the density distribution given by the strong blast-wave

theory18,19,20,25926

should be valid, since streamlines over most parts of the
entropy layer now come from the slender portion of the shock; hence, the hyper-
sonic small-~disturbance theory applies. The fact that the blast-wave solutions
reveal the structure of a detached shock layer and a low=density entropy layer
is well known. The ratio ,O//om in this situation may, in fact, be represented

by (assuming a flat-plate afterbody)

I
‘o
vhich is small for all practical purposes. The second situation may perhaps be
realized only for an extremely small blunt nose (hence large x/¢ ) together

with an extremely high Mach number. In either situation, the supposition

2 (3.2)

c0
within the entropy layer can be well justified. Its error is presumably no

larger than that incurred by the assumption « ~ U , that is, requirement (A).
An immediate consequence of the low density in the entropy layer is that
the variation of pressure across it is small enough to be negligible., We can

examine this from the equation of motion governing the momentum component in the

* Note that under requirement (A), 67 4 e for € 1.
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direction transverse to the layer., The fractional variation in pressure across

the entropy layer is readily seen to be

r~ Ye. — Yb\ - (_/_0__,
0 /OQ, < Ye / 0 /ow) << / (303)

and is therefore negligible according to our requirements.

-2
Pe

In view of the above conclusion, we can now employ the simplification

u =~ U
(3.4)
P P ()

for study of the flow pattern within the entropy layer. The equations stating

conservations of mass and entropy are
s w2y ==p5
(u——+nr-—§-—) = - (u

Eliminating the density /g and making use of the simplification on « and 2 5

Eloa

°r :
2,

2P

e

these two equations give an equation for - , or /KVQL . This equation can

be integrated to yield

v ' -9 4
=Y O by e (3.5)

for which the following boundary condition at the imnner edge of the entropy layer

(also the outer edge of the boundary layer)

fv’/ U = Yb/ (%) at = Y, @)
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has been satisfied. Putting aﬁf%/¢¢ for ni‘/u , we can integrate Eq. (3.5)

once again and obtain an equation for the streamline

[ - Vo ] gt = (3.6)

where m 1is a constant differing for each streamline. This equation should

hold throughout the entropy layer. Applying it at the streamline boundary,

W= Y. @) s we arrive at

[Ye@‘) =Y, (44)} 1f’e(¢) = constant. (3.7)

This simple integral relation between the pressure and the cross-section area of
the entropy layer is basic to our subsequent development. The corresponding

integral relation in the axisymmetric case is

2 2 7
[Ye - Yb ] #ve = constant .

The pressure 7ae is that at the base of the shock layer, Y = Ye s and
is given by shock-layer theory once Ye (44) is specified. This relation for Pe
from shock-layer theory can be used to eliminate 70'3 in Eq. (3.7), and we can
write down, at least in principle, an ordinary differgntial equation involving
only Ye . The shock-layer theory gives the Busemann formula, Eq. (3.1), as a
leading approximation. The pressure-area relation consistent with this approx-

imation is therefore reducible to (from Eq. (3.7)).
17
R ASE constant ,

In carrying out a higher-order analysis (in € and I/ M2 62 ) , we should not
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only employ a pressure formula correct to the order desired%, but also work con-
sistently with a more accurate pressure-area relation based on Eq. (3.7).

The constant on the right of Eq. (3.7) is necessarily related to the drag
of the blunt nose, as a consideration of the balance of momentum in the stream-
wise direction will readily show. With the help of the equation of contimity
and making use of the small-perturbation requirement (A), we can write for M> 1

the equation relating drag and momentum flux as
Dy i = - A s .ﬁiﬁﬁfC{ —Px Y
2 + ﬂYb %-— ,/_’ #+f 2 7 7/__[ s (308)
40

where D, is the drag contributed by the pressure distribution around the small
blunt nose*? The second term on the left of Eq. (3.8) then represents the drag
contributed by the afterbody. The first and the second integrals on the right of
Eq. (3.8) may be interpreted, respectively, as the internal and kinetic energies
associated with the cross=floﬁ field. As a result of the small-perturbation re-
quirement; the streamwise perturbation velocity « does not enter into the above
relation,

In view of the drastic difference in the density between the entropy layer
and shock layer, it is convenient to write the second integral on the right of

Eq. (3.8) as

14
¥*

The first-order € correction to the Busemann formula has been given ex-
plicitly by Freeman in Ref, 37.

3%
The nose drag D, has been defined as the total drag of a symmebrical nose;,

namely, 4 = YY,) . In the case without top-bottom symmetry, Dy/2 should
then be taken as the contribution of one part of the surface which begins at
the apex; or the stagnation point, of the nose.
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The lateral extent of the shock layer is generally of an order higher than that

of the entropy layer; i.e.,
(. - Y.) (Ye—){’;) = 0[6-:- VM”Q’*] 2

whereas the ratio of density in the entropy layer to that in the shock layer is

(8) ¢ v

As a result, the magnitude of the first integral is seen to be smaller than that
of the second by a factor fe /pw . To be consistent with Egs. (3.2) and (3.3),
we may omit the first integral in comparison with the second. Now, if only zero
and first-order terms are to be retained in the momentum-drag relation, the
kinetic-energy integral can; of course; be further simplified, and Eq. (3.8)

may be written as
% f Ys 2 12
€D, + zéfﬂﬁﬂé*“f ﬁ’ﬁ’%""e/"mu YeYe - Vs (3.8a)
+0 T

which is correct to, and includes terms of, the first order of (¢ + I/Mzea) .
The afterbody drag integral on the left is of the same order as y; € . Since
» N/OGG UZQz s ‘the second terms on both sides of the equation, as well as

. 2 2 . A
P (YS—- Yb) s will be of order (é+ I/M 6% ) higher than the first integral
on the right, and they can all be dropped in the leading approximation. This

agrees with the observation that for € 8mall the number of degrees of freedom



excited becomes very large, and most of the energy gained by the flow field ap-
pears as internal energy, which is the remaining term on the right.

Since the pressures in the shock and the entropy layers belong to the same
order; we can replace the location of the shock by the base of the shock layer
in the zero-order approximation, and the momentum relation Eq. (3.8), to this

approximation, is reduced therefore to

€ Dy ’—'7";30@‘\/4,)

That is;,

<Ye - YbXYe Ye')‘ = € D”/aaa v* (3.9)

This is the pressure-area relation pertaining to the zero=order theory previously
given; but with the constant now determined. For the axisymmetric case; the

corresponding relation is
2 2 R 2
W] es] = 2e ot

For the zero-order approximation; it seems that consideration of the
momentum-integral relation not only determines the constant of Eq. (3.7), but
also furnishes an alternative, and apparently simpler, derivation of the pressure-
area relation, For the higher approximation, however, we may find it convenient
to use Eq. (3.8) stfictly as a subsidiary condition. The constant in the
pressure~-area relation; Eq. (3.7), can be determined by passing to the limit
4% —>+0 in Eq. (3.8).

We may note that, on the basis of Eq. (3.9)s; “the pressure Pp ; i.e.,

p _
(Y; \:;) s can never become negative. This:is to be expected since the shock
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layer in our treatment is no longer required to follow the body surface. However,
Eq. (3.9), as well as Eq. (3.7), has not excluded the possibility of an attached
shock-layer, and also contains the free layer as a limiting solution. We can see
this readily by examining Eq. (3.9) for the nearly limiting situation of an ex-
tremely small nose. The constant on the right of Bq. (3.9) in this case then re-
duces to a very small but positive number. Now, for -5, to be finite, it is
clear that the shock layer must remain essentially attached to the body; i.e.,
Y; o \L . As soon as 4, approaches zero, the entropy layer will, accordingly,
begin to thicken and the shock layer will detach to form a free layer.
Discussion

On the basis of the foregoing analysis, the fields of pressure and velocity,
as well as the locations of the shock can all be consistently determined under
requirements (A)-(C). We have arrived at these results without the need of
simultaneously knowing the density distribution within the entropy layer, except
for the fact that the density level of the entropy layer is comparatively low.,
On the other hand, the present theory actually affords no solution for the
entropy field; to find the dénsity or entropy in ihe entropy layer, certain de-
tailed knowledge of the flow field around the blunt-nose region would be neces-
sary. It must, however, be pointed out that the determination of density may no
longer be a trivial matter for the present problem if the assumption of constant
specific heats were removed. For, under this more general situation, the value
of density would be essential for determining the local ﬁhermodynamic properties,
hence the local value of € , which in turn will determine the pressure and
velocity fields. In this case, it will be more appropriate to redefine ¢ as

€ E’f@/ggkand the relation corresponding to Eq. (3.9) becomes (¥ = 0, or 1) .

23



. )
7016(/)6) YM:D

v €8y N
The results of the above analysis confirm, in a certain sense, the validity
of the blast-wave theory for the tip-bluntness problem.‘l8'=20o In spite of the

fact that the blast-wave theory of Refs., 18, 19 and 20 does not take proper ac-
count of the presence of the entropy layer, and gives erroneous values for the
entropy and density near the body surface, the pressure and velocity determined
by the present analysis of the entropy layer may be identified as those of the
blast-wave theory, as an inspection of the governing Egs. (3.7) and (3.8) will
readily reveal,

Our general approach to the inviscid leading-edge problem is-.also similar

to a treatment given previously by Chernyi®ts2

s, as pointed out earlier. In
Chernyi's treatment, which is essentially a momentum-integral method, use is

made of Y a7 U and 7D'Qj7bé6%% The basic equations employed, written here for
steady plane flows, are

®
Sev v an = 725 (0-0) # S Ui (0
(3,10)
.P,b — Poo UZ<YS,2+ YsYs“

- We note that the first of Eq. (3.10), except for the first term on the right-hand
side, is almost the same as Eq. (3.8a). It is evident that, as far as the lead-
ing approximation for small € and | / Mzez is concerned, the above equation
ard Eq. (3.9) obtained by the present study are essentially equivalent. When

the higher-order approximations are considered, we must compare Chernyifs equa-

tion, i.e., Eq. (3.10), with our Eq. (3.7). We may note that, implicitly in



Eq. (3.10), the outer edge of the entropy layer has been replaced by the shock
itself, and the ﬁusemann pressure formula has been used. Hence, it is doubtful
that Eq. (3.10) would yield a consistent correction to the leading approximation.
At any rate, the two treatments are seen to be quite different when higher-order
approximation is considered.

The entropy layer downstream of a blunt nose has also been studied re-

3

cently by Guirauth By an ingenious mathematical technique on which the
writer is not in the position to elaborate, Guiraud has arrived at an equation
which can be readily identified as the pressure-area relation, Eq. (3.7), given
above. However, Guiraud does not use the momentum-drag relation, Eq. (3.8) or
Eq. (3.8a), to determine the constant term on the right of Eq. (3.7). Instead,
he relates the term to an integral involving shock curvature in the nose region.
Hence, this term cannot be explicitly determined until the complete problem in-
volving the nose region is solved. Strictly speaking, therefore, the results of
Guiraud's study in Refs. 2 and 43 do not fall into the same class as the blast-
wave theory.

The reason for the departure of Guiraud's treatment from the present one at
the final stage of the analysis may be related to the remarks given in Ref. Li2:
There, Guiraud observed that, for a flat-plate afterbody, Eq. (3.7) calls for
P oC Ye-ql° If one assumes YEOC Ys s then

2 Yo \? 2
g oc (———d]:) o« L,

and hence,
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vwhereas the blast-wave theory provides . Ys o ¢7'/ ® « It was thus concluded that
the momentum=drag integral relation which leé.ds to the blast-wave result camnot
be used to determine the constant since it appears to contradict the pressure-
area relation, Eqe (3e7), unless 7—>1 . It must be noted, however, that no
streamline in a self-similar hypersonic flow field, except for those on the body,
can be similar to the shock surface, ieees Ye oC \g cannot be true., Otheruise,
there could be no flow into the region between the shock and the body. In fact,
Eq. (3.7) states just this fact. For, according to the blast-wave results,

YsoC mz/ % and Pe oC g oC (Ys /¢)?>c 4[7/3 5 _the streamline boundary for the

entropy layer will then be given by the pressure-area relation as
~lfy /37 ( 2/3
Ye oc p, T 4 x % )

The consistency between Ys oC 442/ ? and YeoC 4&2/ ¥ for small but nonvanishing

€ can indeed be checked by the results of the higher-order analysis of the shock-
layer theo:r’y3 7o |

| Implicit in the foregoing discugsion is the assumption that the physically

meaningful solution to Eq. (3.7), when the leading-edge effect predominates, is

the blast-wave solutioﬁ Ys oC /)(,2/3 « The fact that the blast-wave solution

does not necessarily represent the complete solution to Eg. (3.7) can be seen by

examining the corresponding equation for small € - in the case of the flat-plate

afterbody, that is,

Ye(cYel)' =€ Dy /p""uz
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The complete solution of this equation can be readily fou.nd,* However, the only
particular solution which is compatible with the small-disturbance requirement
turns out to be Ys oC ¢2/’ o A detailed discussion of this point is given in
Appendix I. For reasons of consistency, the solution to Egse. (3.7) or (3.9)
when bluntness dominates will be taken to be YS oC /)42/‘i throughout the present
analysis.

In what follows, we shall apply the results of the above analysis to the
problem involwving both tip bluntness and boundary-layer displacement effects.
The zero—order theory for small € and large M zez will be developed in de-

taile

* The existence of a complete solution, in this case, was called to the writer’s
attention by Mr. J. P. Guiraud in a recent communication. .

27



SECTION L

THE ZERO-ORDER THEORY FOR INTERACTION OF THE BOUNDARY LAYER
AND ITS OUTER FLOW UNDER THE INFLUENCE OF LEADING-EDGE BLUNINESS

The Governing Equations for Small € and Large Mzez

For small € , the boundary layer has been shown to be governed by local
similarity, and assuming, in addition, the shock wave involved is strong, the
simple pressure-area relation Eq. (3.9) from the analysis of the entropy.layer
should also hold. Combining these results, the leading-edge problem of hyper-
sonic flows subject to the tip bluntness and boundary-layer displacement effects
can be treated in a rather straightforward fashion.’

To apply Eq. (3.9) to this problem, the inner edge of the entropy layer,
Y;(¢9 s Will be taken as an equivalent body surface which should account for
the displacement effect of the hypersonic boundary layer. Inasmuch as the assump-
tion W, U is valid5’7, the outer edge of the boundary layer may be approx-
imately represented by the displacement thickness d;_ because of the extreme
low density resulting from viscous heating. In this instance, we can replace Y;
by }:/ w + O . () .« By local similarity, &) is given by Eq. (2.3) explicitly
in terms of the pressure distribution, which is now provided by the Busemann
formula,

The equation governing the zero-order approximation, that is, the leading

approximation for small € and large M2g%® , 1is, for the plane flow,

[i- Y-8 (LX) = ek e

S =< (0 664+173 Ii) o/l AL
lo M* (Ye Yéa)j

(L)

28



After solving Eq. (k.1) for Y, , we can determine the pressure from the
Busemann formula and the heat-transfer rate as well as the skin friction from

Eq. (2.3). The rudimentary mamer in which the three flow regions -- boundary
layer, entropy layer, and shock layer =- interact is contained in the ordinary
differential equation given above. In the absence of tip bluntness, we have only
the shock layer and the bourndary layer. The first of the above equations then

becomes

Ye =Y, + 35,

and Eq. (Lie1) reduces to
— -
T,
2 (Ye’Yw)[;/Ye Ye'] = € (0.664+/.73 %—)L,_ZI/T'——_ o

Near the origin, £ =+Q , Eq. (L.1) admits the singular solution Y, z£”.
This is the correct behavior when the blast-wave effect of the leading edge is

19’209 and confirms that near the leading edge the displacement effect of

strong
the boundary layer gives way to the more powerful effect of leading-edge blunt-
ness, For cases which do not involve bluntness, Eq. (lL.la) reveals singular

behavior of another type: as 4 —0 , X;,\,4¢Wh% o This is the behavior to be
expected when the displacement effect predominatess’6’9° With these singular

- solutions as leading terms; solutions to Eq. (l.1) can be obtained by a forward
integration from the origin. These asymptotic solutions for Y. , as well as

the pressure and the heat transfer, will be examined subsequently for flat-plate

afterbodies.

bl

For Eq. (4.1), we shall assume that as #—>0 , Y,, v ¢’ , where 0 > 2/3 .
For Eq. (L.la), we assume that as #-—>0 , Y, ~ 4®, Wwhere ¢~ > 34 . In
any case, assuming a regular afterbody shape, i.e., Y@ ~opoas g—>+0
will be sufficient.



As is obvious from the requirements (4)-(C), the error in the zero-order

theory is presumably of the order
7-1
[ / / ( ;ZfV;}
* o t*t :
O € M292 2 9

If terms of the next orders are consistently included in the analyses of the en-
tropy layer and of the boundary layer, in the manner previously described, the
first two error terms may presumably reduce to €? and ] / M‘*@* .

In view of their frequent occurrence in the later development, it is con-

venient to introduce two new variables for the plane flow,

= a3 t
K. = Me b

(4.2)
. 3 /0
ne L= -+ . -—"‘—Iai. e
where U
A
‘Re = _/%e.____.
Ao
Except for the factors € and € (0.66L4 + 1.73 IQ/V; ) , these two variables are
those employed previously for the bluntness and the displacement problemslnzhv

In what follows, the zero-order theory will be applied to the problem of a
flat plate in hypersonic flow subject to the three effects of bluntness, dis-
placement, and angle of attack. In order to see clearly the manner in which these
effects will act in combination, the simpler problems involving only two simu1=
taneous effects (namely, K, — 1, s %/e - Mee s Ke —Me¢) will first be singled
out for discussion.

The Flat Plate with Bluntness and Displacement

For this problem, Eq. (h.1l) can be reduced to
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ZZz)-7z7 =] (1.3)

where the new variables are

Z=8M [%:/Ké] Y, Kéao
= 1/6 [%G/Ke 2/’]

2 3
Note that both K, (=Medbt) and 267,{6 i} € @oééh + 1,73 -TT—!L) M C//éEet]

are independent of 4 . Therefore, Z and & are proportional, respectively,

fco -Ye and 4 . Let ¢=272 and /1=d,¢/af§“ . FEquation (L.3) may then be

written

Y28 A difap /T =1
which can be integrated by a separation of variables to give
B =4[/ - 2fe + st 11 77)]
2/3

This result provides the desired behavior at the origin, namely Ye v as

#—>0 . To obtain a relation between & and ¢ s wWe note that

42 = ¢¢¢ uid¢d/l

and the solution of Eq. (L.3) can finally be brought to the parametric form

z = 2/Z[/X-Na+ 2/Tfs ~ln(l+47)
= (+/A) <25 (1+/7) + 9 ()" 220+ /T)
—lj,—owﬂw(/v‘-fi—)m 4-;/77//:/(/4-/7)+ 2'[%(11% /,T)T-/— 46

(bols)
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This result for Y, , which may also be taken as the shock location Y,

! 7
is presented in Fig. 3(a) as M[Q;;/K;I {_/Ké WERLE 2/6 /Ke 4 . The corre-

sponding surface pressure and the surface heat-transfer rate are given in (b)

4 T
and (c) of the same figure as Ke/’l:] P 7, Pw and € @oééh + 1,73 7 )X

2
E(é/%/ezjl Mszoh./j;{a . We can see that Y_ varies as 443/4 as £ -— o

and as 442/3 as 4—>0 . These two limits correspond to situations in which

displacement ‘and bluntness dominate, respectively, agreeing with strong-interac-
tion theory in the first case and strong blast-wave theory in the second. One
imporﬁant feature here is that-all parameters and spatial variables are grouped
together to form one single variable Ze / K;/"’ » From Fig., 3 we see that

transition from the strong blast-wave to the strong-interaction regimes occurs

107 < g i)t < 2

-2
A variable analogous to Zé Ke /2 s which controls the combined effect of

in the range

bluntness and displacement, has been previously pointed out by Lees and Kubota
in a discussién assuming a weak nose effectzo

The appearance of ’/éa and 7’9’“ in the nondimensional forms of pressure
and heat-transfer rate introduced above result from the use of the Busemann for-

mula |
#o/f Ut = peflumait” = [0 0]

Retaining the factor 7; s instead of replacing it by unity, is in keeping
35-40

with the convention of existing shock-layer theories Furthermore, it per-

mits € to represent conditions behind the shock even when € ® is not small.
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It is of interest to examine more closely the asymptotic solutions. They

can be written, for large and smalll:ZQ//6<é.%éj] ;5 respectively; as

MYs/qa =L21YF, 131 (K.)"*
% 2

7%,/7; = Lﬁ Te 7 Gs) ()7 (1.5)
€ (06644173 )M 7, 7, =0.219/F, 5 (KN

The appearance of jte in.the above strong-interaction solutions indicates
clearly the roles of € and the.wall temperature level. In view of the factor
(0,66l + 1°73-K2/%;) in 2% , the boundary-layer displacement effect will de-
pend strongly on the wall temperature. An interesting observation is that if

we simply add the two asymptotic solutions for 72#/44& s the sum differs from
the exact solution in the transition region by less than 12%. This seéms to

lend support to the empirical linear-combination laws proposed previously by cer-

tain investigatorsz9"31

s at least when € is small.

We may now compare the zero-order solution in the two limits with the cor=.
responding self-gimilar solutions which do not assume 7/ close to unity. In
Tables II and III, results from a few of these existing sol.u’c,ionsé’u’20’21”26
for 77 = 1.40 are tabulated and compared with those of Eq. (L.5). Some of these

results are also shown in Fig. 3. We may conclude from these comparisons that {

—as an approximation for the surface pressure and skin friction when o = 1.k,

the present zero-order solution may not be adequate, and a higher-order solution ////
(in € ) appears desirable. For the surface heat-transfer rate as well as the
shock shape, however, the zero-order theory works reasonably well, in spite of !

the fact that %/ in this case is actually not too close to unity.
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The Inclined Flat Plate with Boundary-Layer Displacement

With bluntness excluded, Eq. (L.la) can be transformed to
v
@ :c)l/z=z) =1 (1:6)

where the variable 2 and & now stand for

z = 4mx|’ Ye/Z:aé

4 [Mzocz/té]a

The angle of attack of the platey; o¢ , 1is positive for compres‘sive flow over

)

4

the plate. The negative sign in front of ¢ in Eq. (L.6) applies to ¢ > O .

In view of the strong shock requirement, our solution for o < O pertains only
to the situation when the boundary layer is thick enough to induce a strong bow
shock. This implies that the region of validity is confined to certain upstream
portions of the flow field, and to a rather small range of negative o . . Again,
there is only one variable governing the problem. In this case, it is foz/zg .
Equation (L.6) appears to be quite different from that underlying the analysis

of Pai and Shenl’ 7"’10, The difference presumably arises from the use of a dif-
ferent formula for the pressure.

For the case of & > 0 the asymptotic solution of Eq. (L.6) for large
MZOCV,Z’G s 1l.e.y large 4« 5 1s simply that for a wedge without displacement
effect, i.e. _

Yo =X %
Puft o = Mo’ (7

€(0.664+1.73 %} o//z 7, = <></Mz
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For small argument of the variable, the strong-interaction solution results; as
given previously in Eq. (L.5). When the wedge angle is sufficiently small, or «
small, the incidence effect amounts to only a small perturbation on this solu-

tion. We may then write Y‘3 or Ys as

2 / % 3

This development near the sharp leading edge is valid for both o¢ >0 and

o(.<IO s and reveals a pattern of asymmetry. The curves for & > O presented
in Fig. h* give a smooth transition from the regime of strong interaction to that
of a usual hypersonic wedge flow. Curves for o £ 0 in the same figure show a
gradual deviation from the Stewartson-lees solution as we go downstream. For the

shock shape and the pressure, the range of transition for o > O appears to

107% < M&%é < /0

whereas for the heat-transfer rate, the value corresponding to the pure wedge-

ocecur in

flow solution is closely approached as early as M zbc%e =2 , From the agree-
ment of our zero~order solutions with the se1f=-similair solution for 27 = 1.40 iﬁ
the two limits (see Fig. L), we may anticipate the zero-order resulis to be rea-
sonable for heat transfer, pressure, and shock shape, provided the surface tem=

perature is substantially lower than the stagnation temperature.

* The numerical results of Fig. li were obtained by digi‘cale-ma.cl’qine computation
(IBM 70L4), using an interval of 100 points per unit of (Z_f, )/“~ .
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The Inclined Flat Plate with Tip Bluntness and the Corresponding Problem
of a Blunted Cone

For the inviscid problem of the blunted flat plate at incidence with neg-
ligible boundary-layer displacement effect; we have from Eq. (l4.1) the simple

differential equation

z 7 )(z 2') = | (19)

where the variables Z and C now stand for

Z=20"Y feht

g = Zloclsx/ezét

In this cése s Wwe again use the same convention for o¢ .
For the purpose of later discussiony; we will examine in detail the asymp-
totic behavior of the solution of this inviscid problem for small and large § .

Near the leading edge;, we find from Eq. (L4.9) the desirable result
A S s
S/t v G ) ) < (£ (419

which holds for both positive and negative of and reveals an asymmetrical per-
turbation of the blastmwave solution., At the far downstream end, where the
effect of the surface incidence dominates, we will develop the asymptotic solu-

tion only for o >0 . Equation (L,9) then yields for large &

2 & G+ (AL (/D) B Y, (2 /T)] (.11)

where A and B are constants, and ‘To' and Yc' are Bessel functions of the
first and second kind of certain order ¢ . In view of the first and second

terms we see that the shock will tend to the wedge surface, but never quite reach
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it, as we go downstream. Most interesting is the oscillatory behavior of the
solution. According to the asymptotic behavior of the Bessel functions; the

third group of terms of Eq. (L.10) is equivalent to

EAV;CN/ (/T +B)

The correspondihg behavior of the pressure is then
/
ﬁ/fwﬂ Mx?* =EZzZ") M/—@-—)Ay; kows (2 +B) (L.12)

Evident from Egs. (L.11) and (4.12), this oscillatory decay of the tip-bluntness
effect will be more readily revealed in the pressure distribution than in the
sﬁock shape.. The results obtained from numerical integration of Eq., (L.9) by
digital machine computation” are presented (as the full curves) in Fig. 5. The
oscillatory decay of the tip-bluntness effect is inéeed exhibited by the pressure
distribution for ¢ > 0 .

It may be of interest to point out, in this connectlon, that the solutlon

to Eq. (L.9) can be approximated surprisingly well by the §qpatlon

Zz - ; —(ZZ) /+7=[059 2/7)- 07/ (27’—)J (4.122)

which is also included (as dotted curves) in Fig. E:\VThé“functlory Z given
above not only agrees with the asymptotic solution Eq. (L.11) for large &
but also has a singularity at ;::0 identifiable as that of'the“blast=wave solu-

tion. In addition, it satisfies an integral relation of the differential equa-

-
e
-

A
i

An interval of 100 points per unit of (i’;)/3 was used in the computation.,
The heat-transfer rate, which is not presented, may be obtained in terms of
the pressure from Eq. (2.3).
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tion Eq. (L4.9); namely

(e

The physical significance of the oscillatory decay observed from the above

analysis should, of course, be taken with caution. The result of the zero-order
solution in this respect is evidently comnected with the passage to the mathe-
matical limit, ﬁ/—ﬁ>1 . Apparently the oscillation represents a repeated re-
flection or skipping of the reattaching shock layer as it reaches the vicinity
of the surface of a very slender afterbody at infinite Mach number. The phenom-
enon may hence be interpreted as a form of glancing reimpingement of the shock
layer. From the very fact that this oscillation is a decay phenomenon, its de-
tail may probably be substantially altered by higher-order € corrections., For
7= 1,40, in reality we may not have any oscillation in the pressure decay, since
the amplitude of the fluctuation shown is never large.

For the purpose of comparing the afterbody effects in two and three dimen-
sions; the results of a similar analysis applied to a blunted slender cone will
be briefly discussed. The basic differential equation corresponding to Eq. (L.9)

for this axisymmetric problem is

(Z"—gz)(z’2+ 2 Z%z) =/

Z=2xY, Ve k£ ¢t
C =2 oo"/;o/ Ye b t = ’!w\q’ S

with

* This approximate analytic representation of the solution to Eq. (L.9) was
pointed out to the author by Professor H. Pollard of Cornell University.
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where o« now stands for the half-cone angle, T the nose diameter, and A the

nose drag coefficient

: Dy
! 2 2
MUt

The peculiar manner in which the shock layer approaches the afterbody ls more

il

A

markedly revealed in this case than in the case of the blunted wedge. From the
results for shock shape presented in Fig. 6(a), we see that the changeover in

' the viecinity of o¢?4a/§éﬁlfz-=/ occurs rapidly, as if the detached shock layer
remgins essentially unaware of the presence of the afterbody until reaching the
immediate neighborhood of the cone surface. On the other hand, the corresponding
surface pressure, as well as the surface heat-transfer rate (calculated on the
basis of local similarity for the léminar boundary 1ayer), given in (b) and (c)
 of the same figure show a much earlier influence of the afterbody. The oscilla-
tion in pressure, decaying as a Bessel function, is again found, but in a ?ather
manifested way. We should note that in this axisymmetric case, the first pres-
sure undershoot, and the oscillatory cycle immediéfely'following it are so pro-
nounced that their occurrence may not be too surprising even when € is not as
small, and'the shock not as stroﬁg,‘as required by the zero-order approximation.
This peéuliar behavior of the pressure distribution may be quite meaningful for
studies of the influence of bluntness on boundary-layer instability° The pres-
sure undershoot has, in fact, been observed experimentally for slender blunted

cones at M = 6.85 in air53¢

The undershoot of cone pressure has been predicted previously by Chernyis’zz,

using an integral method discussed in Section 2. TFor the inviscid flow past a

blunted cone with .7 = 1.LO, Chernyi finds a strong overshoot following the pres-

39



sure undershoot. The Bessel function decay is, nevertheless, not found. 1In a
similar treatment for the blunted wedgeal,‘there is no pressure undershoot, ac-
cording to Chernyi's result. The difference between the present solutions and

Chernyi's presumably results from the difference between Egs. (3.9) and (3.10).

The Combined Effect of Bluntness, Displacement and Body Thickness

For the flat-plate problem involving all three effects ( z% 5 K; s and
ptnoc) s Wwe find that a new parameter appears in the reduced form of the solution.

If we choose to use, for example;

M I:Q:://Ker Ye/%e )
¢ =16 [1./k*]

Eq. (L.1) for this problem becomes

Z - n"e) (Z )2z =/ (L.13)

where |7 1is a parameter (independent of A ) given, for the wedge flows, as

_ K M
= 2%

Z

)l

(L.o1k)

Figure 7 gives the results of integration for the surface heat-transfer rate in
the same variables as used for the zero-incidence case, i.e., Fig. 3(c¢). Shown
are curves corresponding to five positive values of [' , namely, " = O, 10"2,
10'1, 1, and 10, The curve for [' = 0 has been previously given in Fig. 3(c).
Similar calculations may also be carried out for negative values of [* .

From these results we can see the role of the wedge angle in modifying and

controlling the combined effect of the bluntness and boundary-layer displacement.
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The slight oscillatory mode revealed in the curve at the upper left corner of
Fig. 7 for [7 = 10 corresponds to the oscillatory pressure behavior discussed
previously for the inviscid wedge problem. The results show that when [7 is
not too large, the oscillatory phenomenon will subside as a result of the
inviscid~viscous interaction.

Hypersonic Similitude Based on the Zero-Order Theory

From the flat-plate problem, we see that the zero-~order solution is redu-
cible to a function involving only one variable and the parameter [' . Viscous
hypersonic flows over a blunted inclined plate will accordingly be similar for
the same [’ . For thin bodies other than flat plates, we have from Eq. (L.1)
the following similitude involving tip-bluntness and boundary layer: For similar

" bodies generated from the same equation

Yw/rl_ =t (—f)

the following correlation applies:

dZI v
[Ke /tez ]z 7%/7; Peo = %—3(%?,,){_ s [ (L+15)

T\ Ke T o2
c(066%+ 173 )Z}} M,o/z

Ts
where { represents the functional dependence concerned. Two alternative forms

of Eq. (L.15) can be found in Appendix I.
It is essential to realize that the above correlations do not imply the
possibility of obtaining the full similitude for the entire flow field, which

should then include the density and temperature fields within the entropy layer.

The latter flow quantities in the entropy layers have been excluded from the
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present framework of study, however. These correlations based on the zero-order

theory, Eq. (L4.15), will be subject to the same errors as Eq. (L.l), i.e.
" 2 2o
o[(%— D+ 1 /M6 + 46 T:J

The most serious among these is presumably that associated with ¢ . Implicit
in the above results are also the assumptions of the linear viscosity-temperature
relation, unit Prandtl number, as well as uniform.'ﬂk//7; s+ Thus for a more ac-
curate correlation under more general conditions, the similitude based on our
zero-order theory may not suffice., As a part of the study complementing the
foregoing analysis, an examination of the hypersonic similitude under less re-

strictive conditions will be given in Section 5.
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SECTION 5

THE VISCOUS HYPERSONIC SIMILITUDE INVOLVING
LEADING=EDGE BLUNT'NESS *

For both experimental investigations and practical applications, laws df
similitude for correlating flow-field properties under different free-stream
conditions and body dimensions are desirable. The similitude arrived at pre-
viously in Eq. (L4.15) is eimple but restrictive, In the following, the more gen-
eral viscosity-temperature relation‘/u chTﬁaS assumed, the Prandtl number is
taken constant but otherwise arbitrary, and the body surface temperature is arbi-
trary. A perfect gas with constant specific heats is still employed but the
specific heat ratio is no longer required to be close to urnity.

The inviscid hypersonic similitude which takes into account the effect of
slight blunting has been given by the au.thor;ho In a recent paper, Hayes and
Probste‘in55 consider the similitude of hypersonic boundary layers. From these
two studies a viscous hypersonic similitude involving bluntness is not difficult
to infer. Hayes and Probstein caution, however, that the similitude involving
bluntness may not be extended to the viscous case, or only under a condition so
restrictive as to make the result uninteresting. In view of thisg an examination
of the basic requirements which underlie hypersonic similitude seems proper at
this point.,

Basic Requirements for the Validity of Hypersonic Boundary-Layer Similitude
Involving Tip Bluntness

Hayes and Probstein observe that the hypersonic small-disturbance theory

necessarily fails in the vicinity of the blunt nose itself, and it would appear

“ A certain part of the study presented in this Section is based on unpublished
work on the subject which was sponsored by the U, S, Air Force Office of
Scientific Research (Mechanics Division).
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that the theory, hence the Yequivalence principle" deduced from it, would break
down in the layer of fluid of increased entropy nearest the body. It may then
follow that hypersonic similitude camnot hold within the éntropy layer as well
as the boundary layer beneath it. The major conclusion of our following discus-
sion is that a full similitude capable of correlating the density and temperature
distributions near the outer edge of the boundary layer is not possible, but
correlations for the pressure and velocity fields, as well as the density and
temperature distribution within the boundary layers proper; do exist.

let us first examine whether similitude can exist in the inviscid flow re-
giono' On the basis of our discussion in the earlier part of Section 3, we see
that under requirement (A), the approximation « 22 |J holds throughout the in-
viscid flow region including the entropy layer; The applicability of the require-
ment (A), and the degree of approximation involved, has been examined, From the
fact that (4 a2 () we can conclude that the pressure £/ and the velocities &~

and U vdo obey the equivalence principle, and hence the hypersonic similitudesB,
For the density and temperature in the entropy layer, however, the "equivalence
‘principle" may not be strictly applicable since these quantities may depend on
the entropy determined upstream at the nose shock.

For the boundary layer, we observe that, with the wall conditions specified,
the solution will be completely determined;, by the three quantities at its ouber
edge: the pressure -2, , the total enthalpy Hg (= Hm) s and the velocity
Wy - To be sure; for determination of the boundary-layer solution, the speci-
fic knowledge of flow density or temperature at the outer edge is actually not
necessary. Following essentially the same procedure as Hayes and Probstein in

examining the system of equations governing the boundary layer, we find that the
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condition required for the existence of boundary-layer similitude is that the
quantities -B4 I{a and Uy must obey the equivalqnce principle in the outer
flow. But, under requirement (A), and for M 1large, this condition can indeed
be satisfied. In particular, we have WUg &5 |J . A similitude can therefore ex-
ist in the hypersonic boundary layer. We may note that the actual magnitude of
the error in the heat-transfer rate, the skin friction, and the displacement
thickness incurred by the approximation ¢ = (/ will not differ a great deal
from ,Z&u9/4]| o In fact, if we assume local similarity (which is appropriate
for the present application) the corrections to these quantities will be, respec-
tively, -1/2, -3/2 and +1/2 of | Au, U\ .

We may hence conclude that; for a perfect gas with constant speelflc heats
and a viscosity-temperature relation ,A&eC’T's with the exception of the dis-
tributions of density and temperature in the outer flow, the classical hypersonic
similitude of Tsien and Hayes can be extended to the boundary layer, even under
the influence of the leading-edge bluntness, provided the flow regions imme-
diately downstream of the leading edge are excluded and the flow Mach number is

sufficiently high, i.e. -
| 1 N7
+(0) &I Y

When the biuntnesé effect is not present, the requirement will presumably be.
less stringent.

The tip-bluntness effect introduces an additional parameter P4ik-§% into
the boundary-layer similitude discussed in Ref. 55. The simiiarity laws correla-
ting shock shape, surface pressure, surface heat-transfer rate, and skin friction
.in plane flows may be written in a form comparable with Eq. (L.5) for the zero-

order theory:
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o
[Ke/?f:_‘lzﬁ'w/ﬁ; P | :F[{_;(z

' 2
3 gi)7l—pfggi zi/ﬁaaiéﬂ .
¢ <o,ee4+ 173 %‘L)[;%] M, //Zj w7 (5 jf)
¢ 0.664+1.73 %)[%z—rm%n //Z
‘with )
Y, /vl
T/ To
We see that the simplicity gained by the zero-order theory; which assumes a very
strong shock and a very smail € consists essentially in the elimination of'
the parameters % , 7Q//ﬁ; and ’kéi/ﬁ(é o Alternative forms of Eq. (5.1) are
given in Appendix IT as are the similarity laws for axisymmetric flows.,
There are two important limiting cases of the similitude given above. One
is the case of negligible boundary-layer displacement effect, the other that of
a very strong shock wave., For the first, the interaction parameter P42+&74§£;j

will become merely a scaling factor, and we have
2+

Pﬂd%/ﬁ.)]ﬂi@,;ﬁﬂi@ =‘“§%i?=€4?<%?5 P1¢';P43&-%%; 777037 F%)

A discussion of the second case follows.

Hypersonic Similitude Involwing Strong Shock Waves

For this case; we require the shocks to be very strong so that terms of

-1
*‘é‘(@)z 7 and //\4 297

may be neglected in comparison with unity. From the viewpoint of practical ap-

plication,; consideration of this special form is not trivial. The only essential
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difference in basic requirements between this similitude and that of the zero~
order theory is the condition on o .« The zero=order theory furnishes results
in a convenient form for comparison with experimental data correlated by this
similitude,

Under the assumption of a strong shock, the Rankine-Hugoniot shock condi-~
tions may be simplified. Using a suitable affine transformation, we arrive at

a form of similitude comparable with Eqs. (lie1l5) and (5.1):
. -2
2
Ma/] v/
. :
I,Re/lé:l 7°'w/7;o Po *Ft;(—f—z/s):/ﬂ:?@@;Pr
. . : Ke A
T, K12 e
c(0.664 +1.73 2~ l:—zr] M, /77
o Z,e . 00

with - |

Y, /7L

/T

Comparing this with the more general similitude of Eqe (5.1), we see that in
the above form of similitude the dependence on the parameter [2’67/(6 :I s or
on ,kl?et / M 2w s becomes very weak as a result of the shock being very '
strong. On the other hand, comparison with the zero-order result, Eq. (Le15) ,,
shows that as a consequence of relaxing conditionson P~ , @ » and € , we
have now to include as invariants the parvameters R 5 ¢ s € » as well as
Tw / T, <+ The dependence on ¢ and on T, / T, in the strong~shock similitude

cannot be too strong, however, since both parameters are associabed with the

 FPirgb-order ¢ effect.
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SECTION 6
CONCLUSION

A theoretical study has been made of combined leading=edge bluntness and
boundary=-layer displacement effect in hypersonic flow over thin bodies. Through=
out the investigation, a continuum flow of perfect gas with constant specific
heats is assumed. An approach has been developed based on a flow model consist-
ing of three adjoining regions: an inner laminar boundary layer, an outer
(detached) shock layer, and between these two regions, an entropy layer. Solu-
tions for this flow model have been obtained by considering the mutual interac—
tion of these three regions under the requirements of the hypersonic small-

disturbance theory and the shock=layer theory. In the boundary layer, a small

perturbation procedure in € = ::/ is developed vhich gives the local similarity
result as a leading approximation. In the entropy lgyer, the low density leads
to the simple pressure-area relation Eqe (307). In the detached shock layer,
the results of existing shock=-layer theory are gpplicable. The zero-order ap=
pro:d.mé,tion in this approach corresponds to the classical result of Busemann.

In the theory developed for the leading approximation, the problem of hyper-
‘ sonic plane i‘lowg over a thin body of an arbitrarily specified shape is reduced
tc->_'q‘ne gdveilned'by.a second-order ordinary dii'feren‘bial equation; icee Eqe (liel).
Thel éimplicity of this ’equation permits solutions to numerous problems of inter-
est, including the combined effect of leading=-edge bluntness, boundary-layer
displacement, as well as surface inclination. Continuous transitions are exhi-
bited between limiting solutions which agree with existing blast wave, strong
viscous interaction, and hypersonic wedge theories for small € . Application
of this zero-order theory to the case of finite € , mnamely o = 1.0, shows a

rather small discrepancy from the exact solutions, as far as the surface heat-

48



transfer rate and shock shape are concerned. One interesting feature found for
inviscid flow over a blunted wedge or cone is an oscillatory pressure decay over
the afterbody surface. The result can be interpreted as one limiting form of
shock=layer reimpingement at glancing incidence. It may also be related to the
"pressure undershoot" observed in experimental studies of hypersonic flow over
blunted slender cones, and could be meaningful for studies of bluntness induced
boundary-layer instability.

For the pressure and skin friction, a (consistent) first-order € correc-
tion to the zero~order result appears desirable. The procedures for obtaining
higher-order approximations have been fornm;ated in Sections 2 and 3., While ex~
plicit solution to the boundary-layer equations for the higher=~order correction
is presently not available, simple and effective methods, such as that of
Ref. 119, may be gpplied for this purpose. It may be pointed out that the results
obtained herein are also applicable to a thin airfoil of arbitrary planform via
the "strip theory", The consistency of this strip theory with the present ap-
proach has been pointed out in Ref. 41 and discussed more fully in Ref. 56.

Hypersonic similitude ’has been examined in Section 5 for the present prob-
lem where both bluntness and boundary=layer displacement effects are present.
The classical similitude of Tsien and Hayes can be extended to include these
effects for the correlation of pressure and velocity fields, as well as flow
quantities of interest within the boundary layers proper, | provided the vicinity
of the small blunt nose is excluded. For flows involving strong shock waves, a
simplified similitude is obtained. The zero~order results, which require a
strong shock and also small € , may be readily compared with experimental
data correlated in this similitude. For consideration of experimental verifica-
tion of this similitude and comparison of the experimental results with the zero-

order theory, the reader may refer to Ref. L5,
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APPENDIX I

ON THE COMPLETE SOLUTION TO Y (YY’) = e £t/

Throughout the study presented in the text, it is tacitly assumed that

the solution to

(Ye = Yb)‘/' £z = constant (1.1)

behaves like Y;AJ W e , as required by the existing blast-wave theo =3

This implies, for the special case 9—>1 and YL:: 0 , that the only solution

of

v "V
e (Ye K:) = ekt) (1.2)
admissible to the present study is that of Eq. (L.5) of the text, i.e.
/3 ,
3 LY.
Te =(-2—) (c£t) »" - (1.3)

On the other hénd, a complete solution can gctually be obtained for Eq; (Te2)
which not only includes ﬁhe blast-wave result Eg. (T.3), but also exhibits the
feature of a "free la&er" in the 1limit of 41— 0 . Tt thus appears that by

employing the complete solution, it would be possible to describe, in analytic

39 in the neighborhood of a

terms, the transition from Lighthill's free layer
blunt nose to the blast-wave dominated region far downstream. However, as far as
application to the present problem is concerned, it is also essential to examine
the compatibility of this solution with the small-perturbation requirement (4)
which underlies Eqs. (I.1) and (I.2). The main conclusion of the following dis-

cussion is that, unless the small-perturbation requirement is removed, or relaxed,
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the improvement gained by using the complete solution camnot be established; and
the particular solution pertaining to the existing blast-wave theory appears to
be the only valid result under requirement (A)-(C). Below; the complete solu-
tion to Eq. (I.2) will be presented first, and the question of consistency with
the small=-perturbation requirement will then be examined. The existence of an
explicit integral form of Eq. (I.2) for the complete solution was pointed out to -
the writer recently by Mr. J., P, Guiraud of ONERA, France.,

For convenience, we shall drop the subscript e from Ye » Since the
differential equation, Eq. (I.2), does not contain the independent variable %

we may let o= YY’,, and the equation can be integrated to yield

that is,

YY'=jekt (YrC) (1.1)

Integrating once; after separation of the variable, one has the complete solu-

tion

(e, 3¢, ec = 3 /2B (u+C,) -

For large % 5 Y >>C,  Eq. (I.5) provides the blast-wave result,
i.eos Eqo (I.3). Now, for sufficiently small % , Eq. (I.5) may be developed

for Y<< C, s namely \
e [38)  36-) 1 () +
~56" [ () 4 G- ) £ () ]
:-=2?— Yebt (+C,).
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We see that the constants C‘ and Cz have to be related as
32

and, what seems to be more significant, that, for small #
2]
:(é/&tci) ¢/+ ¢l.rr

This is no more or less than the equation of a free layer. Now, if the domain
of validity for the solution in the blunt-nose region and that for the hypersonic
small-distance theory should join, the above asymptotic solution for small x
must be identified as Lighthill's free layer in the vicinity of the leading edge.
Accordingly, (, belongs to the order ( t/gé) , 8o that the equation for the

free layer mey be written as
i/ [)
Y: a/t/zﬁ/z-t'o".
(1.6)
a= O()
The above relation implies that the shock layer detaches from the body at = (%)

with ﬂjxﬂy, O(I ) The complete solution may now be expressed as

ve tfed)] -3 (et/et) [¥+at/ct)]”
=3 fekt (n-%a"t/c ]

The blast-wave result, Eq. (I.3), would be obtained from Eq. (I.7) by neglecting
terms of the order (@ Zf'/é.éY )

The question of whether, and when, the more complete solution Eq. (I,7) is

(L?)

compatible with the small-perturbation requirement (A) will be examined. In this

respect, the asymptotic solution for large (64@ Y/Zi‘ ) s 1.e., the blast-wave
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result, has been studied in Section 2 of the text, where the range of its validity
has been established. We shall, therefore, be concerned with two remaining ques-
tions: (1) can requirement (A) be satisfied, when the difference between Egs.
(I.7) and (I.3) is not small, and (2) when the blast-wave solution dominates, does
the contribution from the ﬂt/GAéY terms belong to an order lower than that

of the error in the hypersonic small-disturbance theory.

The first question amounts to
s ebYfat £ O0)
_'(ﬂ s | ? ’ (.8)
R\d « :

Since ekY/zz‘é o , Y= o[t’/2-¢'/"] , and

=0E.4) | (1.9)

Hence,
a LT
(d_/;:-) ?-O(e/:@) i/ =00) (1.10)

Therefore, when the free-layer character begins to predominate the solution for
flat-plate afterbodies; the small-disturbance requirement cannot be satisfied.

The second question concerns

if E/réY/d»LL > |

( . <62 z; - (1.11)

Since e,ﬂ?%t >0, Yn/(e,g,'[,‘)/3 ., and
Y2 Ya
( 6”“) ( 6”4 (1.12)

a,
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thus
2 5L £t

7 z%%L 4$#“
) @ ol ]
dx (g,éy %2/ T \ehkY (eAé'Y

Therefore, the (a, t /5 ,)@ Y) terms in the blast-~wave dominated range are too small

(I.13)

to be considered as a valid improvement of the small-disturbance theory.

Our conclusions are: (1) The complete solution, Egs. (I.5) or (I.7), exhi-
bits an apparently realistic behavior of the detached shock layer over a flat-
plate afterbody, providing a transition from the Lighthill's free layer to the
blast-wave solution; (2) Unless the small-perturbation requirement (A) is re-
moved, or relaxed, the complete solution cannot, however, represent an improve-
ment over the existing blast-wave result; (3) The solution may, perhaps, find a
valid application to the corresponding problem in the "piston theory'" where the

small-disturbance assumption is not required.
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APPENDIX II
ALTERNATIVE FORMS OF HYPERSONIC SIMILITUDE FOR CORRELATING
SHOCK SHAPE, DISPLACEMENT THICKNESS, SKIN FRICTION,

SURFACE PRESSURE AND HEAT-TRANSFER RATE IN PLANE
AND AXISYMMETRIC FLOWS

On the basis of the hypersonic small-disturbance theory and the boundary-
layer theory for ideal gases with constant specific heats; constant Prandtlis
number and the viscosity-temperature relation/ﬁz OC'TA), gimilarity can exist
among flow fields around thin or slender bodies. For bodies having similar

shapes and similar surface temperature distributions, i.e.

(I1.1)

/Tt &
=7 T)
Tw/ s
one may thus correlate the corresponding shock shapes, surface pressure and
heat-transfer rate as
MY, /L
2+ 34y
% M ey
' =f(5 s Mr =
7’1«/ floo L M fRe_L ? M
M3
Ty

where 5y and 49 represents arbitrary functions of the variables involved, dif-

/
%w% 7 Pr) (I1.2)

ferent for different flow quantities. The displacement thickness of the bound-
ary layer d; and the skin-friction coefficient A<, can be correlated in the
same forms as for the shock shape Y; and the coefficient of surface heat-
transfer Ty s respectively; and therefore will not be repeated hereafter.

It may be useful, for application in experimental studies, to consider cer-
tain alternative forms of the similitude cited. A few of these forms, with

Eq. (IT.1) unchanged, are given below:
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Y/l ST YO i SN
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2 /P M
G COMBETICH 10 TR PRy

. M
_IT% ( Y )‘E:j
M~

I\447/3)‘/s %,ezL :ﬁ(%;-g%;P;ﬂ?éjﬁ;Pr)

"

2#3? 2 Y% ) f{%ﬂ )
MYS/H}'/'Ja. ,'226 L -xa:#(r '; %’eL‘ KEL J/—-,)Hjé 744:)) Prj
]IHW M30H J :
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where % is the same as 7} defined in Section L, with «=L , and
€

6l.
- 30, .
Ké = le (E,é)'“ _%
L

KeL / z:’_

143
149

I

-

)
M =1 M)
The forms of Eqs. (II.2a) -~ (II.2d) given above have the property that, for cases

involving very strong shock waves, M4 or TI will drop out from the right of
Eqs. (II.2a) - (II.2d), and the total number of the similarity parameters can
therefore be reduced by one. The forms (II.2b) - (II.2d) have the additional ad-
vantage that, for strong shocks, small € , unit Prandtl number, linear repre-
sentation of the viscosity-temperature relation, and uniform T, / T‘; s not only
the constants [Pr and 4) drop out from the similitude but also the parameters
€ and T, /To are not required to remain fixed in the simulation. The last
three forms correspond to the forms of particular solutions presented in Figs. 3-
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TABLE

I

COMPARISON OF SKIN FRICTIONS AND SURFACE HEAT-TRANSFER
RATES OF A FLAT PLATE AT HIGH MACH NUMBER PREDICTED
BY SOLUTIONS ASSUMING LINEAR VISCOSITY-TEMPERATURE

RELATIONS AND THOSE BASED ON YOUNG'S FORMULA

FOR s oc T

Table I(a) Asymptotic Formulas for high M
Chapfnan & )
L2 Present Young
Rubesin
. : To Tw
Reference Temperature T W < l:l + 3 T ]
0 w=! Q—TI D -1
& bsaifeln] T 1,1 %] K 0.5 %]
:QF Re 0066,4[2 M‘ (To Z + = T, (R") 0,18 + —;7?—"““.’;
TW \Vé Tw
% . ' 7 /e [- %]

Comparison of the skin friction predictions for Pr = 0,71
Table I(b) and ¢ = 0,76, at high M
Tw ('C’{') f (‘(’{:) (’C',p)
T Chapman & i
© Rubesin Present Young
0 o0 ] 1,03 H 1
1/10 1.1l e 1,06 3 1
1/6 1,10 3 1,05 s 1
1 0,99 E 1,05 2 1
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TABIE IT

COMPARISON OF THE ZERO-ORDER SOLUTIONS WITH THE SELF-SIMILAR
SOLUTIONS TO THE PROBLEM OF STRONG SHOCK-BOUNDARY LAYER
= 1,40 AT DIFFERENT

INTERACTION OVER A FLAT PLATE FOR y

WALL-TO-STAGNATION TEMPERATURE RATIOS

3 3 Sources From © ©) © o

i MY, P |Mecoy |My e |Wnich Data || Vs | Pu |Zv_ | ¢
T w7 ¥ % 2 7 Y are Given

° i X ( [4 or Deduced % P “h | “e

o |o0.62 |0.58 |0.0965 | 0.216 |Whalen?® 0.82| 0.85 | 0.89 0.80

(0,183) |(0.10) (0.20) Lees15

0.20 - = 0,232 0,118 0.283 Whalen26 - - | 0,88 0.90[ 0.75
0,40 - - 0.312 - = = - - - Whalen26 == 1088 «=} = =
1aOO - = Ooshé - e o 09855 Stewartsonls ot oo 0089 Sl Om38
"NOTE: 1, Lees! theory based on tangent-wedge formula for pressure.

2,

3.

()

s A

(o)

to one (all theories assume Pr

519 I/AC‘C-T)«

Zero-order theory differs from others only in assumption ¢  close

, etc. represent zero-order solutions given in text, -
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TABLE III

COMPARISON OF THE ZERO-ORDER SOLUTIONS WITH THE SELF-SIMILAR
SOLUTIONS TO THE FLAT-PLATE AFTERBODY FROBLEM FOR ¢ = 1,40

3 © (o} (o) &)
T % 2y | Mo <y Cp Sources From Ys P < e
- Yafns \*h3,. BT VB ~ Which Data are ” o
o | & (?) LlPu KT 2K . Givén or Deduced 1A Pw | #
0 0,73 0,112 | .0671 2,39 | Cheng & Pallone3 1,05 | 1.4h | 1.15 | 0.97
(0.775) | (0.121)| (0,0697)| (2,39)| (sakurai®) (0.99) | (1.33)] (1.10)| (0.93)
0,35 | 0.73 | 0.112 | .0682 | 2.56 | Cheng & Palione’ | 1.05 | 1.uk | 1.1k | 0.89
OohO 1t (1 °070h 2,87 it ] " 1 " 1.10 0.77
1.0 n " 0748 | 3.60 LA . " 1.04 | 0,58
NOTE: 1. oy and 4, are obbtained from the self-similar solutions to the
boundary-layer problem under the pressure given,
=md 2 t
2, K=M_ A F = K /¢ (for ¥ =0),
3. The numerical coefficient in the shock-shape result for 7 = 1,40
given by Cheng & Pallone is in error; the corrected formula is
/3 z/3
Ts =038 (/i) + .
bio 7&“’ 9 A%#w) s etc. represent zero-order solutions given in Eqe (L.5).
5, If data deduced from Sakurai's blast-wave solution are used as a
basis for comparison, the zero-order approximation will generally
appear better.
6, For the case of cylindrical afterbodies, the blast-wave solution of

Sakurai gives

Y, = 0.195 £20i)"t

(]
YS//YQ = 009589

(o)

v /| Pw

It

n

10)4.60

0.0689 A, M4 '/z—f,é , and
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(a)

/——LW//////////‘T’L I l
e T - ) ) 1 "z

ENTROPY LAYER: Yp < ¢y < Yo
SHOCK LAYER: Yo < ¢y < Vs

(b)

Figure
AROUND A SLENDER .BODY WITH SMALL BLUNT NOSE

I (a) ILLUSTRATIONS OF THE STREAM-LINE PATTERN OF THE FLOW FIELD

(b) DIVISION OF THE INVISCID-~FLOW REGION ABOUT A SLENDER
AFTERBODY INTO A SHOCK LAYER AND AN ENTROPY LAYER
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Figure 5
EFFECT OF LEADING-EDGE BLUNTNESS AND ANGLE OF ATTACK

RESULTS BASED ON THE ZERO-ORDER THEORY OF A FLAT PLATE UNDER THE COMBINED
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